LightBend $^{\text {TM }}$ Quad 1x1 Multimode Fiberoptic Switch (Bidirectional)

(Protected by U.S. patent 6823102 and pending patents)

Product Description

The LB Quad 1×1 Multimode Fiberoptic switch is a highly integrated single device with 8 fiber ports. Based on an Agiltron's pending patent, the switch is designed especially for protection and restoration applications. The switch is activated by a 5 V pulse between two states and latching operation preserves the selected optical path after the drive signal has been removed. The switch has integrated electrical contact based position sensors. The proprietary simple design significantly reduces moving part position sensitivity, offering unprecedented high stability as well as unmatched low cost. Electronic driver is available for this series of switches. The switch is bidirectional.
We offer tight-bend-fiber version, which reduces the minimum bending radius from normal 15 mm to 7 mm . This feature enables smaller overall foot print.

Performance Specifications

15 Presidential Way, Woburn, MA 01801 Tel: (781) 935-1200 Fax: (781) 935-2040

LightBend $^{\text {TM }}$ Quad 1x1 Multimode Fiberoptic Switch

Mechanical Dimensions (Unit:mm)

Electrical Connector Configurations

The load is a resistive coil which is activated by applying 5 V (draw $\sim 40 \mathrm{~mA}$). Applying too long pulse for the latching version will heat up the device. Agiltron offers a computer control kit with TTL and USB interfaces and Windows ${ }^{\top M}$ GUI. We also offer RS232 interface as an option - please contact Agiltron sales.

Latching Type (Single Coil)

Application Note: Applying a constant driving voltage increases stability. The switches can also be driven by a pulse mode using Agiltron recommended circuit for energy saving.

Optical Path	Electric Drive				Status Sensor			
	Pin 1	Pin 10	Pin 5	Pin 6	Pin 2-3	Pin 3-4	Pin 7-8	Pin 8-9
$1 \rightarrow 1^{\prime}, 2 \rightarrow 2^{\prime}$ $3 \rightarrow 3^{\prime}, 4 \rightarrow 4^{\prime}$	GND	5 V	N/A	N/A	Close	Open	Open	Close
Block	5 V	GND	N/A	N/A	Open	Close	Close	Open

Non-Latching Type

Optical Path	Electric Drive					Status Sensor			
	Pin 1	Pin 10	Pin 5	Pin 6	Pin 2-3	Pin 3-4	Pin 7-8	Pin 8-9	
$1 \rightarrow 1^{\prime}, 2 \rightarrow 2^{\prime}$ $3 \rightarrow 3^{\prime}, 4 \rightarrow 4^{\prime}$	No Power		N/A	N/A	Close	Open	Open	Close	
Block	5 V	GND	N/A	N/A	Open	Close	Close	Open	

Functional Diagram

LB Quad 1x1 MM Switch

Ordering Information

LBQU-		\square						
	Type	Wavelength	Switch	Package	Fiber Type		Fiber Length	Connector
	$\begin{aligned} & 1 \times 1 \text { Latching }=11 \\ & 1 \times 1 \mathrm{~N} / \mathrm{O}^{*}=10 \\ & 1 \times 1 \mathrm{~N} / \mathrm{C}^{* *}=1 \mathrm{C} \\ & \text { Special }=00 \end{aligned}$	$1060=1$ $C+L=2$ $1310=3$ $1410=4$ $1550=5$ $650=6$ $780=7$ $850=8$ $1310 \& 1550=9$ $850 \& 1310=A$ Special $=0$	Latching(SingleCoil) $=2$ Non-latching=3 Special=0	Standard=1 Special=0	MM 50/125=5 MM62.5/125 $=$ 6 Special $=0$	$\begin{aligned} & \text { Bare fiber }=1 \\ & 900 \mu \mathrm{~m} \text { tube }=3 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & 0.25 \mathrm{~m}=1 \\ & 0.5 \mathrm{~m}=2 \\ & 1.0=3 \\ & \text { Special }=0 \end{aligned}$	

[^0]
[^0]: * N/O: LB Quad 1x1 MM Switch Non-Latching Normally Open.
 ** N/C: LB Quad 1x1 MM Switch Non-Latching Normally Close.

